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Prion diseases or transmissible spongiform encepha-
lopathies are fatal neurodegenerative conditions in
humans and animals that originate spontaneously,
genetically or by infection. Conformational change of
the normal (cellular) form of prion protein (PrPc) to
a pathological, disease-associated form (PrPTSE) is
considered central to pathogenesis and formation of
the infectious agent or prion. Neuronal damage is
central to clinical manifestation of prion diseases but
poorly understood. In this review, we analyze the
major pathogenetic pathways that lead to tissue pa-
thology in different forms of disease. Neuropathogen-
esis of prion diseases evolves in complex ways on
several front lines, most but not all of which exist also
in other neurodegenerative as well as infectious dis-
eases. Whereas intracellular accumulation of PrP forms
might significantly impair cell function and lead to cy-
topathology, mere extracellular deposition of PrPTSE is
questionable as a direct cytotoxic factor. Tissue damage
may result from several parallel, interacting, or subse-
quent pathways. Future studies should clarify the trig-
ger(s) and sequence of these processes and whether,
and which, one is dominating or decisive. (Am J Pathol
2008, 172:555–565; DOI: 10.2353/ajpath.2008.070442)

Prion diseases are multifaceted disorders affecting the
central nervous system (CNS) of multiple species.1

Many aspects of prion disease raise controversies and
questions for a broad audience of scientists. Recently,
several excellent reviews have summarized basic pro-
cesses and phenotypic variability.2–5 In the present
review, we aim to analyze major pathogenetic events
that lead to detectable tissue pathology in different
forms of disease.

It is generally accepted that prion diseases are trans-
missible—hence the name transmissible spongiform en-
cephalopathy (TSE)—and invariably fatal. There may be
exceptions to these rules; on one hand, transmissibility
may fail in certain disease forms associated with amyloi-

dogenesis,6 and on the other hand there is increasing
recognition of a subclinical carrier state in different spe-
cies, including humans.7,8 However, forms originating
from transmission to and between humans constitute a
minority.

In humans sporadic Creutzfeldt-Jakob disease (sCJD)
is the most frequent disease form. Acquired forms with
suspected or proven external prion exposure include
kuru, the historic disease of the Fore tribe in Papua-New
Guinea; iatrogenic CJD (iCJD) related to medical inter-
ventions with central (eg, in neurosurgery, by deep elec-
trodes) or peripheral (eg, cadaver hypophyseal hor-
mones) inoculation; and variant CJD (vCJD) that relates
to bovine spongiform encephalopathy.9,10 Changes in
the 253-amino-acid-long human normal (cellular) prion
protein (PrPC), encoded by a gene (PRNP) on the short
arm of chromosome 20, include point or insertional mu-
tations linked to genetic prion diseases.11 Although at
least 15 PRNP polymorphisms are known, only the me-
thionine/valine (M/V) at codon 129 is clearly influential in
all disease forms.1,11 Genetic prion diseases include
genetic CJD (gCJD), Gerstmann-Sträussler-Scheinker
disease, and the thalamic degeneration fatal familial
insomnia. Transgenic mouse models of human genetic
prion disease have been reported; of these the P101L
mutation has been argued to be a susceptibility factor
rather than a direct cause of Gerstmann-Sträussler-
Scheinker disease (P102L mutation in humans).12,13

Further mutations (T183A and E199K) in mice do not lead
to detectable neurodegeneration, whereas a nine-oc-
tapeptide repeat insertion in the PRNP is associated with
a progressive neurological phenotype without transmis-
sibility.13 It must be noted that not all PRNP mutation-
associated disease in humans is transmitted, raising the
issue whether transmissible forms should be distin-
guished from “proteinopathy” forms. It is clear that the
PRNP genotype and disease-associated prion protein
(PrPTSE) types, including their glycosylation patterns, are
major phenotypic determinants, but it is not clear at
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present how they relate with the heterogeneity of prion
diseases. Thus other genetic or epigenetic factors likely
modify disease phenotypes.5

In addition to the prototype prion disease of animals
(scrapie) that affects sheep and goats, animal diseases
include chronic wasting disease of deer and elk, feline
and mink spongiform encephalopathy, and the epidemic
bovine spongiform encephalopathy (“mad cow dis-
ease”).1 Small animals, like hamsters, mice, or bank voles
can be infected experimentally. Genetic causation cou-
pled with transmissibility has remained a unique para-
digm in biomedicine. Prion diseases are of additional
medical and research interest as well-characterized
models of neurodegeneration.

Prion Proteins: Multiple Forms

Conformational change distinguishes PrPC from PrPTSE

that seems to be the main or only constituent of the
infectious agent.1,14 The term PrPTSE was introduced to
avoid confusion resulting from complex nomenclatures,15

but it is far from accepted in general use. PrPTSE features
a predominantly �-pleated structure, whereas PrPC is
�-helix dominant.1 PrPTSE can be distinguished from PrPC

by its resistance to protease treatment,1 although a pro-
tease-sensitive (PrPSen) but disease-associated transi-
tional form has also been described.16 Accepting PrPTSE

as the infectious agent is the basis of the “protein-only”
hypothesis. However, belief in other pathogens, which
can be summarized as “not-only-protein” hypotheses,
has not uniformly diminished. In this context it must be
noted that 25-nm virus-like particles were recently dem-
onstrated in cell cultures infected with CJD and
scrapie,17 awakening earlier theories. Interestingly, these
particles are similar to tubulovesicular structures found in
all TSE forms, demanding further clarification of their
role.18

The significance of PrPC extends beyond prion dis-
eases. Possible functions comprise roles in neurogenesis
and differentiation of neural stem cells, neuritogenesis,
involvement and interaction with signal transduction
pathways, synaptogenesis, neuronal survival via anti- or
pro-apoptotic functions, copper binding, redox ho-
meostasis, long-term renewal of hemopoietic stem cells,
activation and development of T cells, differentiation and
modulation of phagocytosis of leukocytes, and altering
leukocyte recruitment to sites of inflammation.3 A wide
range of proteins may act as putative PrP interactors.4 Its
up-regulation may occur in inflammatory conditions and
may provide an increased substrate for PrPC-PrPTSE con-
version.2,19 Based on structural similarity, it has been
proposed that PrPC might function as a member of the
Bcl-2 family of proteins.20

The PrPC polypeptide is synthesized in the endo-
plasmic reticulum (ER), processed in the Golgi appa-
ratus, and then carried in its mature form to the cell
surface where most of it is found in lipid rafts (Figure 1).4

Generation of PrPTSE from PrPC would occur after the arrival
of PrPC at the cell surface. PrPC from the plasma membrane
or exogenic PrPTSE may be internalized and processed

through the endosomal-lysosomal system, which may also
be a substrate for their interaction (Figure 1). PrPC can be
synthesized in the ER in three topological forms, designated
SecPrP, NtmPrP, and CtmPrP. Whereas secretory (SecPrP)
molecules are attached to the outer leaflet of the lipid bilayer
exclusively by a C-terminal glycosyl-phosphatidylinositol
anchor, NtmPrP and CtmPrP molecules span the lipid bilayer
with either the N or C terminus.23

Invasion and Spread of Prions: Multiple
Routes

The routes of infection in naturally acquired prion dis-
eases comprise uptake of prions via the alimentary tract
or through scarification of gums (eg, in scrapie), skin, and
conjunctiva.24 Experimentally, intracerebral, intraperito-
neal, or intravenous inoculation has been successful. In
natural diseases like chronic wasting disease, a conta-
gion in the environment or vector has also been sug-
gested, in particular since infectious prions were demon-
strated in the saliva of these animals.25 In humans,
transmission via intramuscular injections or intracerebral
inoculation in iCJD and transfusion of the vCJD agent has
been reported. The spread of prions depends on their
site of entry, strain, dose, and species as well as the PrP
genotype of the host.24

Major involved tissues and pathways following nat-
ural infection or experimental peroral challenge have
been elucidated, mostly in experimental scrapie, and
comprise accumulation of the agent in lymphoid tissue,
spread to the peripheral nervous system, ascension to
and dissemination within the CNS, and eventual final
spread from the CNS to peripheral sites such as mus-
cle. In particular, gut-associated lymphoid tissue and
gut-associated lymphoid tissue-draining lymph nodes
have a significant role. Prion transport and replication
involves microfold cells (M cells), follicle-associated
epithelium, follicular dendritic cells, dome and tingible
body macrophages, and cells with dendritic cell mor-
phology.24 The complement system and B cells have a
supporting role.26 –28 The vagus and splanchnic nerves
are paths for the initial spread to ganglia and to the
CNS.24

TSE infectivity has been detected at preclinical and
clinical stages of infection in the blood of sheep naturally
infected with scrapie or perorally challenged with the
bovine spongiform encephalopathy agent.29 In addition,
human blood from donors who incubated vCJD also con-
tain the infectious agent.8 Whether hematogenous spread
contributes substantially to the infection of the brain in ac-
quired prion diseases is difficult to clarify, due to the rarity of
the disease and difficulty of tracing historical routes of
transmission.

Even in sporadic prion diseases, PrPTSE may be de-
tected in peripheral organs including the spleen, periph-
eral nerve (also in Gerstmann-Sträussler-Scheinker dis-
ease), and muscle tissue.30,31 Apparently, prions may
propagate not only to but also from the CNS via neural
pathways. Infection of muscle may happen via efferent
projections of motor units to neuromuscular junctions and
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postsynaptically into muscle fibers, but sensory nerves
may provide an additional pathway.24 The possibility of
trans-synaptic spread of PrPTSE to the muscle was sug-
gested after detecting PrPTSE subsarcolemmally in myo-
fibers and endoneurally in nerve fibers in muscle tissue of
hamsters orally infected with scrapie agent, together with
a distribution pattern of PrPTSE resembling the innervation
of motor units.32

For prion propagation in the nervous system, axonal
transport, passive translocation in perineural lymphat-
ics, spread in neural interspaces, sequential infection
of Schwann cells, and a domino-like conversion of PrPC

into PrPTSE along neural cell membranes have been
proposed (Figure 1).24,33,34 In the diseased human
brain, PrPTSE is deposited in diffuse/synaptic, patchy/
perivacuolar, perineuronal, and plaque-like patterns.35

PrPTSE may also accumulate in astrocytes and micro-
glia.36 We have found PrPTSE colocalizing with both
chemical and electric synapses in the neuronal cell
body and dendrites, thus both post- and presynapti-
cally, as well as in intra- and adaxonal localizations.33

This agrees with the finding of PrPTSE in the synapto-
somal fraction in CJD brains,37 and with ultrastructural

immunogold studies of murine scrapie indicating
PrPTSE at the plasmalemma and dendrites.38 Intra-ax-
onal PrPTSE particles are the size of endo-lysosomes
and suggest prion trafficking via axonal transport
mechanisms33; neuritic transport of prions has also
been confirmed in an in vitro model.39 Earlier, we iden-
tified PrPTSE within macrophages and vascular-associ-
ated dendritic cells in the vessel wall and perivascular
area in sCJD.40 Macrophages may take up PrPTSE and
sequester infectivity. Dendritic cells, which have close
contact to macrophages, are potentially mobile, and
can migrate via the blood and across vessel walls,40

thus representing another possibility for prion spread
in the body.

Scrapie infection of mice engineered to exhibit nephri-
tis, hepatitis, or pancreatitis with local infiltrates compris-
ing follicular dendritic cells, as well as mastitis of sheep,
induces prominent PrPTSE production at the sites of in-
flammation.2 This has also been demonstrated in a hu-
man case of concomitant inclusion body myositis and
sCJD.41 Apparently conditions with up-regulation of PrPC

(eg, in inflammation or neurogenic lesion of muscle)19

may foster extraneural prion production.

Figure 1. Summary of cytopathology and PrP
processing pathways. Pathway 1 (intracellular
PrP processing, red): The PrPC polypeptide (yel-
low circles), including genetic mutants (green
circles), is synthesized in the ER, processed in
the Golgi apparatus, and then carried in its ma-
ture form to the cell surface where most of it is
found in lipid rafts. Generation of PrPTSE, consist-
ing of a mixture of dominant and subdominant
types (blue and dark blue boxes, A and B), from
PrPC would occur after the arrival of PrPC at the
cell surface. Another hypothetical pathway would
form misfolded cytosolic PrP, associated with neu-
rotoxicity, involving the ubiquitin-proteasome sys-
tem and forming aggresomes.21,22,51 The same
would be promoted by mutant PrPTSE (green
quadrangles). Pathway 2 (processing of external
PrPC and PrPTSE, blue): PrPC from the plasma
membrane is internalized and processed in lyso-
somes. Exogenic PrPTSE, consisting of a mixture of
dominant and subdominant types (blue and dark
blue boxes, A and B), leads to conformational
change of PrPC before or during internalization via
endosomes. Overloading of the endosomal-lyso-
somal system may lead to accumulation of indi-
gestible material or exocytosis of PrPTSE that forms
extracellular aggregated deposits that presumably
lack direct neurotoxic effects. This process may be
accompanied by an outburst of lysosomal en-
zymes leading to tissue damage. The detailed de-
lineation of endosomal and lysosomal compart-
ments is omitted for clarity. Pathway 3 (spread of
PrPTSE, green): Endosomes may transport PrPTSE

in the axons, in addition to domino-like spread of
PrPTSE axolemmally.
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Neurodegeneration in Prion Diseases:
Multiple Pathways

A major gap exists in our understanding of how the
conformational change of PrPC to PrPTSE ultimately kills
neurons. Is neuronal damage caused by a loss of the
normal function of PrPC or by gain of toxic property of
PrPTSE, or are there additional factors? Moreover, it is not
clear which neuronal cell death pathways are crucial and
whether other components of tissue pathology (eg, mi-
croglial and astroglial responses, inflammation) are pri-
mary contributors or secondary events.

PrPs and Neurodegeneration

A Role for Cellular PrP: Loss of Neuroprotective
Function as a Neuronal Killer?

PrP deficiency results in resistance from prion infection.42

When neuronal PrPC is depleted in mice with ongoing
prion infection, early neuronal loss and histopathological
changes are reversed.43 Increased activities of copper/
zinc superoxide dismutase and glutathione peroxidase
have been observed in neurons expressing higher levels
of cellular PrP, and a role of PrPC in the cellular defense
against oxidative or other cell stress has been pro-
posed.19,20,44 In experimental modeling of brain dam-
age, Prnp knockout mice have a tendency to exhibit
larger infarct size; in this aspect the N-terminal octapep-
tide region seems to have a lead function in the neuro-
protection against oxidative stress.45 PrPC has also been
shown to protect against Bax-mediated neuronal apopto-
sis in vitro.46

A Role for Pathological PrP Deposits: Gain of
Function as a Neurotoxic Effect?

Temporal and anatomical correlation between accumu-
lation of PrPTSE and the appearance of neuropathology is
generally good and would argue for PrPTSE as being
neurotoxic.47 Indeed, a peptide corresponding to amino
acid residues 106–126 of the human PrP has a high
intrinsic tendency to aggregate into fibrils and is partic-
ularly neurotoxic.48 It may be hypothesized that a toxic
form of PrP is produced directly from PrPC or as a pre-
cursor to pathological PrP.49 However, the link from
PrPTSE to neurotoxicity is not straightforward, and appar-
ently the compartment where PrPTSE resides is decisive.
The continuing accumulation of PrPTSE in the neuropil of
brains of conditional PrP knockout mice with scrapie that
reverted early spongiform change and prevented neuro-
nal loss and progression to clinical disease argues
against neurotoxicity of extraneuronal PrPTSE.43 Some
studies describe pathology in the absence of PrPTSE, but
these experiments use either transgenic animals encod-
ing mutant proteins that can adopt a pathogenetic con-
formation, but are relatively inefficient at forming infec-
tious PrPTSE, or mice expressing PrP molecules with
“artificial” sequences or expression levels.49 The recent

demonstration of proteinase K-resistant PrP core frag-
ments in non-CJD brains50 on one hand suggests that
small quantities of the abnormal form of this protein may
not always necessarily be pathogenic and that there
might be silent prions lying dormant in normal human
brains; on the other hand, it weakens the concept of a
direct neurotoxic role of proteinase K-resistant PrP.

Cytosolic PrP, Transmembrane PrP, Anchorless
PrP: Further Players?

When PrP accumulates in the cytosol, neurotoxicity and
neurodegeneration are observed.51,52 It has been sug-
gested that access of PrP to the cytoplasm is the neuro-
degenerative trigger in at least some naturally occurring
prion diseases,52 although others consider accumulation
of PrP in the cytosol as an unlikely general pathogenic
mechanism in prion disease.53

CtmPrP has been suggested to be a key pathogenic
intermediate in prion diseases by escaping ER-resident
quality control mechanisms. Certain mutations within PRNP
(eg, A117V) alter the ratio of the topological forms.23 In mice
carrying similar mutations, CtmPrP was found to be associ-
ated with neurodegeneration. CtmPrP-associated neurode-
generation is dependent on wild-type PrP.54

Some observations support toxicity of PrP located at
the plasma membrane. This is based on investigations
with PrP�F, a mutant devoid of octarepeats and the hy-
drophobic domain of PrP, and of a protein named dop-
pel.52 Doppel’s gene is in downstream position to the PrP
gene. Doppel and PrPC have several similarities. Physi-
ologically, neuronal expression of doppel is silenced;
however, its ectopic up-regulation leads to loss of cere-
bellar Purkinje cells.55 Both doppel and PrP�F can in-
duce apoptotic cell death. A change in the neuroprotec-
tive capacity of PrPC, or its interaction with accessory
proteins, or affection of intermolecular interactions of
PrPC may be the background of neurodegeneration
linked to doppel or PrP�F.52

The glycosyl-phosphatidylinositol anchor is an important
component of PrP. Lack of this glycosyl-phosphatidylinosi-
tol anchor leads to less infectivity and less neurodegenera-
tion including also a lack of clinical symptoms, despite the
presence of more PrPTSE in an amyloid form.56

In sum, none of the aforementioned forms of PrP
seems likely as a sufficient single factor for cellular pa-
thology. Genetic ablation of PrP has relatively little phe-
notypic effect, thus lack of PrPC itself cannot account
for neurodegeneration. Rather, a loss-of-function mech-
anism may be exacerbated by additional toxic gain of
function and influenced also by further forms of PrP and
their cell biology.4 Nevertheless, most recent studies
support the concept of transient non-PrPTSE neurotoxic
components since reversible functional impairment oc-
curs before extensive PrPTSE accumulation.57 Further re-
cent work has suggested that the most infectious forms of
the PrP may be oligomeric and that much larger aggre-
gates may not necessarily be infectious58 or toxic.
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Molecular and Cellular Pathways Leading to
Neurodegeneration

In the nervous system, programmed cell death (PCD) in-
cludes apoptosis (type I or nuclear PCD), autophagy (type
II PCD), or atypical forms like paraptosis (type III or cyto-
plasmic PCD), calcium-mediated, AIF/ poly(ADP-ribose)
polymerase-mediated PCD, and oncosis (ischemic PCD).59

The latter associates with necrosis and is thus unlikely in
prion diseases. Pathways that may lead to neuronal death
comprise oxidative stress, regulated activation of comple-
ment, ubiquitin-proteasome and endosomal-lysosomal sys-
tems, synaptic alterations and dendritic atrophy, corticoste-
roid response, and endoplasmic reticulum stress.

Apoptosis

Apoptosis is characterized ultrastructurally by cell shrink-
age, condensation of chromatin (Figure 2a), and forma-
tion of apoptotic bodies.63 Many investigators define as
apoptotic those pathways that require cysteine protease
caspases.64 Demonstration of DNA fragmentation by ter-
minal deoxynucleotidyl transferase-mediated dUTP nick
end-labeling, also called in situ end-labeling technique
(Figure 2b) is frequently used synonymously for apopto-
sis, but it may rather be used to define “vulnerable”
neuronal populations irrespective of the precise death
mechanism behind.

What evidence do we have for apoptosis in prion dis-
eases? Persistent infection by scrapie prions of a hypo-
thalamic cell line causes morphological features of apo-
ptosis.65 DNA fragmentation, morphological changes
typical of apoptosis, and activation of caspases follow the
neurotoxic synthetic peptide PrP106–126 in several ex-
periments,47,48 although caspase-3 activation may disso-
ciate from the neurotoxic effect of this peptide.66 In ad-
dition, translocation of phosphorylated c-Jun-N-terminal
kinase into the nucleus and activation of the nuclear
c-Jun transcription factor have been demonstrated.67 Ac-
tivation of poly(ADP-ribose) polymerase has been found
to result from a response to DNA fragmentation rather
than as result of a toxic effect.68

DNA fragmentation has been reported in both naturally
and experimentally induced prion diseases. Time course
experiments indicated that terminal deoxynucleotidyl
transferase-mediated dUTP nick end-labeling positivity of
neurons precedes cell loss. In human brains, some stud-
ies confirmed this correlation, whereas others described
an inconsistent relationship. No modifications in the ex-
pression of Fas, Fas ligand (Fas-L), ERK, MEK, Bcl-2,
Bax, N-myc, c-myc, pro-caspase-2 and active caspase-3
were observed in human CJD cerebellum, except for a
few cells that displayed dense immunostaining for homo-
geneous active caspase-3.69 An immunohistochemical
and mRNA expression study on Bax and Bcl-2 showed
overexpression of Bax, but not caspase-3, in scrapie-
affected sheep, whereas no variation of Bcl-2 was ob-
served.70 Also, in the neurological phase of scrapie-in-
fected mice no modifications in the levels of Bcl-2, Bax,
Fas, and Fas ligand were observed, although DNA frag-

mentation and a few caspase-3-immunopositive cells
were found.71

In summary, demonstration of morphological features
of apoptosis, DNA fragmentation, and activation of
caspase-3 supports apoptosis as a relevant cell death
pathway in prion disease. However, the variability of re-
sults suggests that this is not the exclusive pathway.

Autophagy

Autophagy is a degradative mechanism involved in the
recycling and turnover of cytoplasmic components. Au-
tophagic vacuoles have been described in experimen-
tally induced scrapie, CJD, Gerstmann-Sträussler-Schei-
nker disease, and fatal familial insomnia 63 and may
result from intraneuronal accumulation of PrPTSE that
overloads the catabolic machinery, followed by eventual
bulk removal of damaged neurons.72 It has also been
speculated that autophagic vacuoles may precede spon-
giform change and thus contribute to the overall pathol-
ogy of prion diseases.

Oxidative Stress

In vivo immunohistochemical studies in experimentally in-
fected mouse brain has demonstrated the presence of ni-
trotyrosine, heme-oxygenase-1, and lipid oxidation mark-
ers, suggesting that Fe-induced oxidative stress might be
one mechanism of neuronal loss in scrapie-infected mice.44

In human CJD brains, oxidative damage to nucleic acids
(Figure 2c) correlates with disease duration but not with
PrPTSE deposition.60

In vitro models provided similar results. Cells perma-
nently infected with scrapie show decreased levels of
antioxidants and are more susceptible to cell death in-
duced by free radicals.44 Exposure to the neurotoxic
PrP106–126 peptide induces oxidative stress.44 Thus it
seems that oxidative stress is a global event in TSEs
affecting all neurons, but the most vulnerable subtypes
(eg, parvalbumin immunoreactive GABAergic neurons)73

degenerate first.

The Endosomal-Lysosomal System

Ultrastructural, immunohistochemical, enzymatic activity,
and gene expression studies have suggested that the
endosomal-lysosomal system has a role in the pathogen-
esis of prion diseases. In cell cultures, the endosomal-
lysosomal system is involved in the processing of both
PrPC and exogenous PrPTSE. Subcellular subcompart-
ments may, at least in part, be the site of PrPC - PrPTSE

transformation as well as of PrPTSE generation.3,36,74,75

Pathogenic PrP oligomers may be released from the host
cells to the extracellular space by direct recycling and/or
via exosome secretion.74 PrPTSE may also end up in
mature lysosomes for degradation. Lysosomal proteases
may be involved in the proteolytic processing of PrP
forms. Indeed, cysteine protease inhibitors can inhibit
PrPTSE accumulation.76 In a recent study we showed that
neurons in regions with prominent tissue damage have
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an increased volume of cathepsin D-immunoreactive ly-
sosomes (Figure 2, d and e); furthermore, cathepsin D
colocalizes with PrPTSE (Figure 2f), indicating that affec-
tion of the endosomal-lysosomal system correlates with
regional pathology.61 Overloading of this system might
result in breakdown of lysosomal functions.

Endoplasmic Reticulum Stress in Prion Disease

Neuronal death in neurodegenerative diseases may have
its origin in the ER. The ER responds to cellular stress
conditions by the activation of adaptive pathways,
termed the unfolded protein response. Several ER-re-
lated chaperones are up-regulated, and ER-related
caspase-12 is activated in vitro in human and experimen-
tal prion diseases, thus favoring the hypothesis of ER
stress as a key pathogenetic event in prion diseases.77 In
another study on human brains, however, PERK, which
launches the most immediate response to ER stress, and
its downstream effector eIF2� were not found to be acti-
vated in human and experimental prion diseases, in con-
trast to Alzheimer’s disease.78 These conflicting data
await resolution.

Ubiquitin-Proteasome System and Aggresomes

The 26S proteasome is a multicatalytic protease complex
found in all eukaryotic cells. Its main function is the deg-
radation of misfolded, damaged, and short-lived proteins
and some components function in transcription regula-
tion.79,80 Recently, neuronal cells overexpressing PrPC

were found to develop cytosolic PrPC aggregates under
conditions of mild proteasome inhibition that did not
cause cell death; however, neuronal propagation of pri-
ons invoked a neurotoxic mechanism with intracellular
formation of compartmentalized cytosolic PrPTSE aggre-
somes that triggered caspase-dependent apoptosis.21

Disease-associated PrP oligomers inhibit the 26S protea-
some, suggesting their role in intracellular neurotoxicity.22 In
humans cytosolic PrPTSE aggregates supporting the afore-
mentioned process have not yet been observed. However,
in sCJD we demonstrated nuclear redistribution and accu-
mulation of ubiquitin-proteasome system components in
correlation with regional tissue damage, suggesting their
involvement in DNA repair mechanisms and/or cell death
machinery.81

Complement Activation in Neurons

Terminal complement activation has been demonstrated
in human prion disease (Figure 2, g and h).62 This might
be initiated by the disease-specific conformational
change of PrP, by free radicals, or alternatively by com-
ponents associated with infectivity that are yet to be
characterized. The role of complement activation in prion
disease pathology may be multifactorial; either sublytic
levels of C5b-9 may generate oxidative stress and induce
apoptotic cell death, or activated complement may di-
rectly lead to cell lysis with consecutive tissue damage.
Since C5-deficient mice develop clinical scrapie with
incubation periods similar to C5-sufficient mice, without a
difference in severity of neuropathology, the role of mem-
brane attack complex as a decisive factor for neuronal
death is unlikely.82

Synaptic and Dendritic Pathology

Both PrPC and PrPTSE locate to synapses, and thus they
have emerged as putative primary targets in prion dis-
eases. Early studies with the Golgi method in human and
animal prion diseases and more recent sequential stud-
ies have revealed progressive loss of dendritic spines.83

Morphologically, distorted dendritic arborization and den-
dritic atrophy may be prominent in CJD brains (Figure 2, i
and j). Importantly, increased levels of Notch-1 mRNA,
which inhibits both dendritic growth and maturation, and
translocation of its intracellular domain to the nucleus, cor-
relate with regressive dendritic changes; thus Notch-1 may
be a mediator of this process.84

Synaptic degeneration and loss are suggested by im-
munohistochemical and ultrastructural studies to pre-
cede neuronal degeneration. Loss of synapses and den-
dritic spines from an early stage in the disease process
may have the effect of isolating neurons from electrical
stimuli and trophic factors, both of which could trigger
self-destructive mechanisms.47,83 Inhibition of neuronal
apoptosis via Bax deletion fails to rescue a neurological
syndrome in mice that is caused by synaptic loss. Thus
antiapoptotic therapies are unlikely to work unless asso-
ciated with pharmacological interventions preventing
synaptic damage.85 However, no correlation was de-
tected between decreased synaptic protein expression
and cell death via apoptosis following scrapie infection.71

Figure 2. Histological and immunohistochemical demonstration of pathological alterations discussed in the present review. Technical details are detailed in our
previous studies.33,60–62 a: Shrinkage of the nucleus in a pyramidal neuron of the frontal cortex accompanied by intense PAS positivity in a representative case with
sporadic CJD, suggesting lysosomal overload. b: Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling positivity, indicated by blue color, of a
representative neuronal nucleus in the same case as in Figure 1a, suggesting apoptosis. c: Immunostaining for RNA-derived 8-hydroxy-guanosine (8-OHG) and
DNA-derived 8-hydroxydeoxy-guanosine (8-OHdG) in CJD demonstrates predominantly cytoplasmic immunoreactivity. d: Cathepsin D (CathD) immunoreactivity in
a normal brain without neurological disease. e: CathD immunopositivity in a representative case of CJD. Note accumulation of enlarged dot-like cytoplasmic
immunoreactivity as compared to Figure 1d, suggesting lysosomal overload. f: Intra- and perineuronal colocalization (indicated by yellow color) of PrPTSE (indicated
by green color) and CathD (indicated by red color) demonstrated by laser confocal scanning microscopy in CJD, suggesting interaction of PrPTSE with the lysosomal
system. g: Immunodeposits of the neoantigen of C9 on a neuron in CJD, suggesting involvement of the terminal complement. h: Neuronal immunoreactivity for the
membrane attack complex (C5b-9) in CJD, demonstrated by LCM, supporting the involvement of the terminal complement. i: Immunostaining for the dendritic
marker MAP-2 in the frontal cortex in CJD demonstrates distorted and fragmented dendritic arborization. j: MAP-2 immunoreactive atrophic dendrites in the frontal
cortex in CJD. Scale bars represent 10 �m for a–h, 40 �m for i, and 20 �m for j.
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Stress Response: Corticosteroids and
Chaperones

Corticosteroids seem to have a role in the pathogenesis
of neurodegenerative disorders in general. Indeed, ele-
vated concentrations of corticosterone metabolites have
been observed during the last 5 weeks of disease of
scrapie-infected mice, as well as a severe disturbance of
the circadian periodicity of corticosterone excretion.86

This dysregulation of corticosteroid excretion might act
as a further cofactor in the pathogenesis of scrapie, for
example by preconditioning nerve cells to neurotoxic
stimuli such as oxidative stress and to apoptosis.

Chaperones, including heat shock proteins (Hsps)
may have several roles in connection with PrPs. On one
hand, they may help to stabilize any of the protein iso-
forms, thus promoting or inhibiting the formation of the
pathogenic conformation. On the other hand, they may
play a role in building up a cellular defense response
elicited by formation of degradation-resistant PrPTSE ag-
gregates. In CJD brains, the inducible Hsp-72 is mark-
edly up-regulated and highly expressed in cells that
show PrPC immunoreactivity as well.87 Elevated levels of
the cytoprotective Hsp-72 may contribute to save the
neuroprotective function of PrPC.

The yeast protein-based non-Mendelian heritable ele-
ment [PSI�], a prion-like form of the release factor
(Sup35) is a model for the determination of interactions
between chaperones and PrPs.88 Hsp-104 is necessary
for the cellular maintenance of this heritable non-Mende-
lian element, but both inactivation and overproduction of
the chaperone result in the loss of [PSI�]. Furthermore, in
yeast cells overproduction of the Hsp70 analogue Ssa
interferes with the effect of overproduced Hsp-104,
whereas overproduction of another analogue Ssb has the
opposing effect.89 Despite these interesting data from
the yeast prion model, the role for chaperones in prion
diseases needs to be elucidated.

Astroglia and Microglia in Prion Diseases:
Attack or Defense?

Astrocytosis is a prominent feature of prion diseases, and
glial fibrillary acidic protein is up-regulated in prion dis-
eases. In addition to glial fibrillary acidic protein, metal-
lothioneins, crystallins, apolipoprotein E, cathepsin D,
and lymphokines are up-regulated in scrapie, although
lack of glial fibrillary acidic protein or ApoE does not
inhibit scrapie infection.90 Up-regulation of astrocytic en-
zymes precedes the development of neuropathological
lesions but follows the rise in PrP, suggesting that the
astrocytic response is induced by PrPTSE and may only
subsequently play a role in tissue damage.

Microglia activation in prion diseases is confined to
regions with spongiform change and PrPTSE deposition
as a modified inflammatory response. Microglia respond
to the neurotoxic PrP106–126 peptide by producing in-
flammatory cytokines interleukin-1� and interleukin-6.
The neurotoxicity of this PrP fragment seems to depend
on the presence of microglia. In contrast, cerebral cyto-

kine gene expression is observed relatively late in murine
scrapie, and tumor necrosis factor-�- and interleukin-6-
deficient mice are susceptible to prion infection, thus
casting doubt on a decisive role of these cytokines.47 In
vitro, microglia have been shown to internalize fibrillary
PrP106–126 to some extent. In vivo, we have demon-
strated microglia to harbor PrPTSE, suggesting that it may
be processed or degraded in these cells. Microglia are
associated with amyloid plaques and may also contribute
to the development of spongiform vacuoles.91

Spongiform Change: The Histopathological
Hallmark of Prion Diseases

Spongiform change is characterized by small (�10 �m)
round or oval vacuolization of the neuropil. Vacuoles
may coalesce (“confluent vacuoles”; size, 10–50 �m),
whereas almost complete neuronal loss by various
causes is accompanied by “status spongiosus.” These
morphological hallmarks must be distinguished from vacu-
olar clefts in the second cortical layer commonly seen in late
stages of various neurodegenerative disorders (“spongy
degeneration of the second cortical layer”) and other irreg-
ular vacuoles caused by tissue rarefaction or edema. Some
disease forms, like Gerstmann-Sträussler-Scheinker dis-
ease or fatal familial insomnia in humans, do not feature
prominent spongiform change or have it only in very re-
stricted distribution, whereas in others PrPTSE deposits are
inconspicuous or even lacking, despite obvious neuronal
loss. In murine scrapie ultrastructural vacuoles are found in
neurites and less frequently in axon terminals, neuronal
perikarya, astrocytes, oligodendrocytes, and myelin.38 In
CJD the presence of vacuoles in cell bodies is uncommon.

The exact mechanism is not clear but is likely a result
of abnormal membrane permeability and increased water
content within neuronal processes. It may be also result
from autophagy.63 Interestingly, depleting neuronal PrPC

in prion infection reverses spongiosis43 supporting the
notion that PrPTSE is not the inducer of spongiform
change. In experimental CJD of mice, local dissociation
between spongiform change and PrPTSE has been ob-
served.92 Moreover, vacuolization in TSE-infected mink of
the Chediak-Higashi genotype, which show abnormality
of membrane-bound organelles (including lysosomes)
and deficiency of lysosomal enzymes, is apparently sup-
pressed,93 emphasizing the role of the altered endoso-
mal-lysosomal system in tissue pathology.61

Conclusion

Neuropathogenesis of prion diseases evolves in complex
ways on several front lines, most but not all of which exist
also in other neurodegenerative (eg, Alzheimer disease)
as well as infectious diseases. “Seeding” experiments
with other amyloidogenic proteins suggest that protein
aggregation has a role in ensuing neurodegeneration.94

Whereas intracellular accumulation of PrP forms might
significantly impair cell function and lead to cytopathol-
ogy, mere extracellular deposition of PrPTSE is question-
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able as a direct cytotoxic factor. Several pathogenetic
events may be present and may distinguish disease
forms. This is the likely reason for conflicting results re-
ported in different in vitro settings, experimental models,
or naturally occurring diseases. Tissue damage may re-
sult from several parallel, interacting or subsequent path-
ways. A simple synthesis of the processing of PrP and
pathogenesis, summarized in Figures 1 and 3, could be
that (1) a yet unidentified event, either spontaneously
occurring or by contact with external prions, or by awak-
ening of silent prions50 initiates conformational change of
PrP with potentially reversible functional impairment of
neurons. This is followed by (2) pathogenetic effector
events outlined in this review, which may develop in
parallel or in sequence, leading to (3) histopathologically
detectable features of neuronal degeneration, astro- and
microgliosis, PrPTSE deposits composed of a mixture of
types (“strains”), from which one may be predominant,
and spongiform change. Blockade or knockout of one
single pathway may be compensated for by another but
may occur too late to rescue neurons from damage. Such
a working hypothesis may be important for drug design,
as targeting of multiple processes might be more likely to
succeed. Since the mechanisms of neuronal degenera-
tion seem to be manifold in prion diseases, future studies
should clarify the trigger(s) and sequence of these pro-
cesses and whether, and which, one of the aforemen-
tioned pathways is dominating or decisive.
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